Influence of deterministic trend on the estimated parameters of GARCH(1,1) model
نویسندگان
چکیده
The log returns of financial time series are usually modeled by means of the stationary GARCH(1,1) stochastic process or its generalizations which can not properly describe the nonstationary deterministic components of the original series. We analyze the influence of deterministic trends on the GARCH(1,1) parameters using Monte Carlo simulations. The statistical ensembles contain numerically generated time series composed by GARCH(1,1) noise superposed on deterministic trends. The GARCH(1,1) parameters characteristic for financial time series longer than one year are not affected by the detrending errors. We also show that if the ARCH coefficient is greater than the GARCH coefficient, then the estimated GARCH(1,1) parameters depend on the number of monotonic parts of the trend and on the ratio between the trend and the noise amplitudes.
منابع مشابه
Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh
This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively. Furthermore, the study explores the adequate volatility model for the stoc...
متن کاملA Note on the Oil Price Trend and GARCH Shocks
This paper investigates the trend in the monthly real price of oil between 1990 and 2008 with a generalized autoregressive conditional heteroskedasticity (GARCH) model. Trend and volatility are estimated jointly with the maximum likelihood estimation. There is long persistence in the variance of oil price shocks, and a GARCH unit root (GUR) test can potentially yield a significant power gain re...
متن کاملThe Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملA closed-form estimator for the multivariate GARCH(1,1) model
We provide a closed-form estimator based on the VARMA representation for the unrestricted multivariate GARCH(1,1). We show that all parameters can be derived using basic linear algebra tools. We show that the estimator is consistent and asymptotically normal distributed. Our results allow also to derive a closed form for the parameters in the context of temporal aggregation of multivariate GARC...
متن کاملEstimating the COGARCH(1,1) model - a first go
We suggest moment estimators for the parameters of a continuous time GARCH(1,1) process based on equally spaced observations. Using the fact that the increments of the COGARCH(1,1) process are ergodic, the resulting estimators are consistent. We investigate the quality of our estimators in a simulation study based on the compound Poisson driven COGARCH model. The estimated volatility with corre...
متن کامل